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Abstract Stop using modularity maximization.

1 Introduction
Ecosystems are composed of interactions between species and their environment. These
interactions form networks that enable the persistence of species, ecosystems, and the
services ecosystems provide people. In the last few decades, network science has developed to
understand networks across a variety of domains. This field has developed numerous
quantitative tools for describing network structure, which have seen increasing adoption in
ecosystem science in the burgeoning subfield of network ecology (Delmas et al. 2019). One
such property is modularity (denoted Q), which is a metric that describes “how well” nodes
of a network can be grouped into modules, first introduced in Newman & Girvan (2004).
Modularity has been widely adopted as a metric of interest in ecological networks, and in
principle the grouping of species into modules could contain biologically meaningful
information.

Unfortunately, the most popular method identifying modules in ecological networks is
Modularity Maximization (MM), which has many well documented flaws for robustly
identifying modules in networks (Fortunato & Barthélemy 2007; Good et al. 2010;
Lancichinetti & Fortunato 2011; Peixoto 2021).

As an alternative, we suggest methods for community detection based on Stochastic Block
Models (Karrer & Newman 2011; Peixoto 2014; Yen & Larremore 2020) for identifying
modules in ecological networks. Although they have seen some use in ecological networks
(O’Connor et al. 2020), modularity is still predominantly used in network ecology. In a brief
literature survey, we found MM methods overwhelmingly prevelent in the analysis of
ecological networks. Here we cover what modularity maximization is, and why it doesn’t
work for identifying modules/groups in networks. We then provide a brief primer on
stochastic block models.
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2 What is modularity?
Consider an undirected network defined by an adjacency matrix A, where Aij = 1 if nodes i

and j share an edge, and 0 otherwise. Let m =
∑

i,j Aij denote the total number of edges in
the network, and ki be the degree (the number of edges) associated with node i. Let bi

denote the group (or module) that node i belongs to. Modularity (Q) is then defined as

Q = 1
2m

∑
i,j

(
Aij − kikj

2m

)
δ(bi, bj)

where δ is a function that equals 1 if bi = bj , and equals 0 otherwise. It is essential to
emphasize that modularity is not a property of a network alone. It is only defined for
a network and a set of group assignments for each node, b⃗.

This value can be interpreted intuitively as how many more edges exist between members of
the same group than would be expected if edges were distributed “at random”. As pointed
out by Peixoto (2021), there is an implicit null model in what “at random” means in this
definition, namely the Chung-Lu configuration model (Chung & Lu 2002), where the
probability of an edge existing between nodes i and j is E[Aij ] = kikj

2m .

3 What is modularity maximization?
Modularity maximization (MM) is one of many potential methods for the problem of taking
an observed network A and infering which group bi each node i belongs to, and how many
total groups B there are total (in network science literature, this problem is called
community detection). MM originated during the mid-2000s (Newman & Girvan 2004) and
was popularized through the efficeincy of the Clauset-Newman-Moore (CNM) algorithm
(Clauset et al. 2004) and the Louvain algorithm (Blondel et al. 2008), both of which made
implementation of MM feasible for very large networks (at the time, hundreds or thousands
of nodes). Six years later after its proposal, Good et al. (2010) (with Clauset, architect of
CNM, as senior author) showed that in practice communities identified via modularity
maximization are fataly flawed for all but idealized networks, and advocated against its use
in “in all but the most straightforward cases”. More recently, Peixoto (2021) more thoroughly
explores this issue, showing how MM can massively overfit and find highly modular
partitions (Q ≈ 0.5) in networks with no modular structure.

4 Why doesn’t modularity maximization work?
As pointed out by Peixoto (2021), modularity maximization fails on two fronts: it
simultaneously overfits (by finding clusters that have high modularity Q but are entirely
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sporatic and unrelated to the mechanisms by which the network was generated) and
underfits (by having a limit on the size of what communities are recoverable relative to the
size of the whole network, called the resolution limit (Fortunato & Barthélemy 2007)).

4.1 Overfitting via a poor choice of objective function
The first issue with modularity maximization is the the modularity function Q has many
local optima, with similar values of Q, but which correspond to qualitatively very different
partitions b⃗. This was first reported in Good et al. (2010), who also show that Qmax is
highly dependent on the number of clusters and the size of the network, and conclude—“[the]
modules identified through modularity maximization should be treated with caution in all
but the most straightforward cases” (Good et al. 2010).

Figure 1: The issue with modularity maxmimization: there are many local optima with
similar Q values that correspond to qualitatively very different group partitions.
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4.2 Underfitting via the resolution limit
The second issue with modularity maximization is that is cannot identify communities that
at smaller than a certain size. The threshold for smallest community identifiable via MM is a
function of the total size over the network, and called the “resolution limit” in the network
science literature (Fortunato & Barthélemy 2007; Lancichinetti & Fortunato 2011).

5 Modularity maximization is rampant in ecological
network studies

We found in a survey of 50+ papers on ecological networks, modularity maximization is
extremely common as the method for finding communities. The goal of this paper is not to
shame or call-out specific papers, but to highlight that a widely adopted practice has
fundemental flaws, and to advocate a principle alternative for community detection.

We suspect MM is so prolific because it is widely available in many packages for network
analysis, including bipartite, which uses a method for modularity maximization for
bipartite networks proposed by Dormann & Strauss (2014), and the very popular libraries
igraph and networkx. Another widely applied method is from Guimerà & Nunes Amaral
(2005), which uses simulated annealing for MM. The prolific availability of software to run
MM-based community detection leads researchers down the “path of least resistance”.

6 What instead of modularity maximization?
The state-of-the-art for community detection in networks are using a family of models called
Stochastic Block Models (SBMs). Although the initial idea dates back several decades
(Holland et al. 1983), modern research into using SBMs for community detection was spurred
by regonition of the flaws with modularity maxmization (Good et al. 2010). SBMs have
several advantages over modularity maximization. SBM inference is naturally posed as a
Bayesian inference problem (Hofman & Wiggins 2008), which allows us to explicitly account
for uncertainty in our estimate of the best node partition b⃗. Further, hierarchical SBMs
(Peixoto 2014), where each block is itself an SBM, enables multi-scale community detection.

6.1 What is a stochastic block model?
SBMs are a probabilistic generative model. This means for a fixed set of input parameters,
SBMs can be sampled to produce different possible realizations of networks from the
distribution of possible networks given the input parameters. In their simplest form, SBMs
take a partition of the nodes into a groups b⃗, and a mixing or block matrix M, where Mbi,bj

is the probablity of an edge existing between nodes in groups bi and bj respectively.
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This enables much more flexability in the types of community structure exist in networks.
Modularity maximization can only capture one type of community structure—assortative
communities, where links within communities are more common that those between
communities. In contrast, community structure in networks can take on a variety of different
forms: assortative, disassortative (where between group edges are more likely than within
group), core-periphery (where a set of densely connected nodes form a ‘core’, and other
‘periphery’ nodes that have few edges and tend to be attached to core nodes ), and ordered
(like trophic levels in a food-web).

Figure 2: “Adapted from Clauset (2022). The mixing matrix M for different SBMs that
account for different types of community structure.”

6.2 How do we infer community structure from stochastic block
models?

We can use Markov Chain Monte Carlo (MCMC) sampler to take an observed matrix A and
obtain an estimate of the posterior distribution of the mixing matrix and group assignments,
P (M, b⃗|A). To do this, we need to define the likelihood of observing some network A from a
given community partition b⃗, and mixing matrix M. There are differences in the best way to
define both likelihood and priors depending on underlying assumptions about network
structure.

For unipartite networks, a common version is the Degree-Corrected SBM (DC-SBM, Karrer
& Newman 2011), which explicitly accounts for the degree distribution by including the
empirical degree sequence in the likelihood of observing each graph.

Nested SBMs (Peixoto 2014). In NSBMs, each “block” Mbibj
is itself another SBM. This
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enables multi-scale community detection that can circumvent the issue of resolution limits
from modularity maximization.

Modern work on SBMs typically focuses on variants of the microcanonical version of both
the DC-SBM and NSBM (Peixoto 2017). Here microcanonical is terminology being adopted
from statistical mechanics, which in practice means these models are defined for a fixed
degree sequence (number of edges per nodes). For a thorough recent-ish review of block
modeling, see Lee & Wilkinson (2019).

Yen & Larremore (2020) develops a model specifically for bipartite networks, where the
bipartite structure is directly incorporated into the likelihood, improving performance for
detecting communities in bipartite networks over DC-SBM.

7 Conclusion
In summary, community detection is great, but modularity maximization is useless. There
are times when modularity, as a method of quantifying the assortativity of edges in a graph
given a set of group assignments b⃗, could correspond to an interesting ecological question.
However, using modularity as the criteria to select the group assignments is too unreliable to
be the basis ecological conclusions. As an alterative, we should use stochastic block models to
infer the structure of modules within ecological networks.
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