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Abstract:Ecosystems are composed of networks of interacting species. These interactions allow

communities of species to persist through time through both neutral and adaptive processes. Despite their

importance, a robust understanding of (and ability to predict and forecast) interactions among species

remains elusive. This knowledge-gap is largely driven by a shortfall of data—although species occurrence

data has rapidly increased in the last decade, species interaction data has not kept pace, largely due to the

effort required to sample interactions. This means there are many interactions between species that occur

in nature, but we do not know these interactions occur because we have never observed them. These

so-called “false-negatives” bias data and hinder inference about the structure and dynamics of interaction

networks. Here, we show the realized number of false-negatives in data can be quite high, even in

thoroughly sampled systems, due to variation in abundances in a community. We provide a null model of

occurrence detection to estimate the false-negative rate in a given dataset. We also show how to directly

incorporate uncertainty due to observation error into model-based predictions of interactions between

species. One hypothesis is interactions between “rare” species are themselves rare because these species

are less likely to encounter one-another than species of higher relative abundance, and this can (in part)

explain the common pattern of nestedness in bipartite interaction networks. However, we demonstrate

that across several datasets of spatial/temporally replicated networks, there are positive associations

between species co-occurrence and interactions, which suggests these interactions among “rare” species

actually exist but simply are not observed. Finally, we assess how false negatives influence various models

of network prediction, and recommend directly accounting for observation error in predictive models. We

conclude by discussing how the understanding of false-negatives can inform how we design monitoring

schemes for species interaction surveys.
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Introduction1

Species interactions drive many processes in evolution and ecology. A better understanding of species2

interactions is an imperative to understand the evolution of life on Earth, to mitigate the impacts of3

anthropogenic change on biodiversity (Makiola et al. 2020), and for predicting zoonotic spillover of4

disease to prevent future pandemics (Becker et al. 2021). At the moment we lack sufficient data to meet5

these challenges (Poisot et al. 2021), largely because species interactions are hard to sample (Jordano6

2016). Over the past few decades biodiversity data has become increasingly available through remotely7

collected data and adoption of open data practices (Kenall et al. 2014; Stephenson 2020). Still, interaction8

data remains relatively scarce because sampling typically requires human observation. This induces a9

constraint on the amount, spatial scale, and temporal frequency of resulting data that it is feasible to10

collect by humans. Many crowdsourced methods for biodiversity data aggregation (e.g. GBIF, eBird) still11

rely on automated identification of species, which does not easily generalize to interaction sampling.12

There is interest in using remote methods for interaction sampling, which primarily detect co-occurrence13

and derive properties like species avoidance from this data (Niedballa et al. 2019). However, co-occurrence14

itself is not necessarily indicative of an interaction (Blanchet et al. 2020). This is an example of semantic15

confusion around the word “interaction”—for example one might consider competition a type of species16

interaction, even though it is marked by a lack of co-occurrence between species, unlike other types of17

interactions, like predation or parasitism, which require both species to be together at the same place and18

time. Here we consider interaction in the latter sense, where two species have fitness consequences on19

one-another if (and only if) they are in the sample place at the same time. In addition, here we only20

consider direct (not higher-order) interactions.21

We cannot feasibly observe all (or even most) of the interactions that occur in an ecosystem. This means22

we can be confident two species actually interact if we have a record of it (assuming they are correctly23

identified), but not at all confident that a pair of species do not interact if we have no record of those24

species observed together. In other words, it is difficult to distinguish true-negatives (two species never25

interact) from false-negatives (two species interact sometimes, but we do not have a record of this26

interaction). For a concrete example of a false-negative in a food web, see fig. 1. Because even the most27

highly sampled systems will still contain false-negatives, there is increasing interest in combining28

species-level data (e.g. traits, abundance, range, phylogenetic relatedness, etc.) to build models to predict29

3 of 24



Figure 1: This conceptual example considers a sample of the trophic community of bears, wolves, salmon
(pink fish), pike (yellowfish), berry trees, and aspen trees. The truemetaweb (all realized interactions across
the entire spatial extent) is shown on the left. In the center is what a hypothetical ecologist samples at each
site. Notice that although bears are observed co-occurring with both salmon and pike, there was never a
direct observation of bears eating pike, even though they actually do. Therefore, this interaction between
bears and pike is a false-negative.

interactions between species we haven’t observed together before (Strydom et al. 2021). However, the30

noise of false-negatives could impact the efficacy of our predictive models and have practical31

consequences for answering questions about interactions (de Aguiar et al. 2019). This data constraint is32

amplified as the interaction data we have is geographically biased toward the usual suspects (Poisot et al.33

2021). We therefore need a statistical approach to assessing these biases in the observation process and34

their consequences for our understanding of interaction networks.35

The importance of sampling effort and its impact on resulting ecological data has produced a rich body of36

literature. The recorded number of species in a dataset or sample depends on the total number of37

observations (Walther et al. 1995; Willott 2001), as do estimates of population abundance (Griffiths 1998).38

This relationship between sampling effort, spatial coverage, and species detectability has motivated more39
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quantitatively robust approaches to account for error in sampling data in many contexts: to determine if a40

given species is extinct (Boakes et al. 2015), to determine sampling design (Moore & McCarthy 2016), and41

to measure species richness across large scales (Carlson et al. 2020). In the context of interactions, an42

initial concern was the compounding effects of limited sampling effort combined with the amalgamation43

of data (across both study sites, time of year, and taxonomic scales) could lead any empirical set of44

observations to inadequately reflect the reality of how species interact (Paine 1988) or the structure of the45

network as a whole (Martinez et al. 1999; McLeod et al. 2021). Martinez et al. (1999) showed that in a46

plant-endophyte trophic network, network connectance is robust to sampling effort, but this was done in47

the context of a system for which observation of 62,000 total interactions derived from 164,000 plant-stems48

was feasible. In some systems (e.g. megafauna food-webs) this many observations is either impractical or49

infeasible due to the absolute abundance of the species in question.50

The intrinsic properties of ecological communities create several challenges for sampling: first, species are51

not observed with equal probability—we are much more likely to observe a species of high abundance52

than one of very low abundance (Poisot et al. 2015). Canard et al. (2012) presents a null model of food-web53

structure where species encounter one-another in proportion to each species’ relative-abundance. This54

assumes that there are no associations in species co-occurrence due to an interaction (perhaps because55

this interaction is “important” for both species; Cazelles et al. (2016)), but in this paper we later show56

increasing strength of these associations leads to increasing probability of false-negatives in interaction57

data, and that these positive associations are common in existing network data. Second, observed58

co-occurrence is often equated with meaningful interaction strength, but this is not necessarily the case59

(Blanchet et al. 2020)—a true “non-interaction” would require that neither of two species, regardless of60

whether they co-occur, ever exhibit any meaningful effect on the fitness of the other. So, although61

co-occurrence is not directly indicative of an interaction, it is a precondition for an interaction.62

Here, we illustrate how our confidence that a pair of species never interacts highly depends on sampling63

effort. We demonstrate how the realized false-negative-rate of interactions is related to the relative64

abundance of the species pool, and introduce a method to produce a null estimate of the false-negative-rate65

given total sampling effort (the total count of all interactions seen among all species-pairs) and a method66

for including uncertainty into model predictions of interaction probabilities to account for observation67

error. We then confront these models with data, by showing that positive associations in co-occurrence68

data can increase the realized number of false-negatives and by showing these positive associations are69
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rampant in network datasets. We conclude by recommending that the simulation of sampling effort and70

species occurrence can and should be used to help design surveys of species interaction diversity (Moore &71

McCarthy 2016), and by advocating use of null models like those presented here as a tool for both guiding72

design of surveys of species interactions and for including detection error into predictive models.73

Accounting for false-negatives in species interactions74

In this section, we demonstate how differences in species’ relative-abundance can lead to many75

false-negatives in interaction data. We also introduce a method for producing a null estimate of the76

false-negative-rate in datasets via simulation. Because the true false-negative-rate is latent, we can never77

actually be sure how many false-negatives are in our data. However, here we outline an approach to deal78

with this fact—first by using simulation to estimate the false-negative-rate for a dataset of a fixed size79

using neutral models of observation. We then illustrate how to incorporate uncertainty directly into80

predictions of species interactions to account for observation error based on null estimates of both the81

false-positive rate (as an a priori estimate of species misidentification probability) and false-negative rate82

(as generated via the method we introduce).83

Howmany observations of a non-interaction do we need to be confident it’s a true84

negative?85

We start with a naive model of interaction detection: we assume that every interacting pair of species is86

incorrectly observed as not-interacting with an independent and fixed probability, which we denote 𝑝𝑓𝑛87

and subsequently refer to as the False-Negative-Rate (FNR). If we observe the same species not-interacting88

𝑁 times, then the probability of a true-negative (denoted 𝑝𝑡𝑛) is given by 𝑝𝑡𝑛 = 1 − (𝑝𝑓𝑛)𝑁 . This relation89

(the cumalitive-distribution-function of geometric distribution, a special case of the negative-binomial90

distribution) is shown in fig. 2(a) for varying values of 𝑝𝑓𝑛 and illustrates a fundamental link between our91

ability to reliably say an interaction doesn’t exist—𝑝𝑡𝑛—and the number of times 𝑁 we have observed a92

given species. In addition, note that there is no non-zero 𝑝𝑓𝑛 for which we can ever prove that an93

interaction does not exist—no matter how many observations of non-interactions 𝑁 we have, 𝑝𝑡𝑛 < 1.94

From fig. 2(a) it is clear that the more often we see two species co-occurring, but not interacting, the more95

likely the interaction is a true-negative. This has several practical consequences: first it means negatives96
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taken outside the overlap of the range of each species aren’t informative because co-occurrence was not97

possible, and therefore neither was an interaction. In the next section we demonstrate that the98

distribution of abundance in ecosystems can lead to very high realized values of FNR (𝑝𝑓𝑛) simply as an99

artifact of sampling effort. Second, we can use this relation to compute the expected number of total100

observations needed to obtain a “goal” number of observations of a particular pair of species (fig. 2(b)). As101

an example, if we hypothesize that 𝐴 and 𝐵 do not interact, and we want to see species 𝐴 and 𝐵 both102

co-occurring and not interacting 10 times to be confident this is a true negative, then we need an expected103

1000 observations of all species if the relative abundances of 𝐴 and 𝐵 are both 0.1.104

False-negatives as a product of relative abundance105

We now show that the realized FNR changes drastically with sampling effort due to the intrinsic variation106

of the abundance of individuals of each species within a community. We do this by simulating the process107

of observation of species interactions, applied both to 243 empirical food webs from the Mangal database108

(Banville et al. 2021) and random food-webs generated using the niche model, a simple generative model109

of food-web structure that accounts for allometric scaling (Williams & Martinez 2000). Our neutral model110

of observation assumes each observed species is drawn in proportion to each species’ abundance at that111

place and time. The abundance distribution of a community can be reasonably-well described by a112

log-normal distribution (Volkov et al. 2003). In addition to the log-normal distribution, we also tested the113

case where the abundance distribution is derived from power-law scaling 𝑍(𝑙𝑜𝑔(𝑇𝑖)−1) where 𝑇𝑖 is the114

trophic level of species 𝑖 and 𝑍 is a scaling coefficient (Savage et al. 2004), which yields the same115

qualitative behavior. The practical consequence of abundance distributions spanning many orders of116

magnitude is that observing two “rare” species interacting requires two low probability events: observing117

two rare species at the same time.118

To simulate the process of observation, for an ecological network𝑀 with 𝑆 species, we sample relative119

abundances for each species from a standard-log-normal distribution. For each true interaction in the120

adjacency matrix𝑀 (i.e.𝑀𝑖𝑗 = 1) we estimate the probability of observing both species 𝑖 and 𝑗 at a given121

place and time by simulating 𝑛 observations of all individuals of any species, where the species of the122

individual observed at the {1, 2, … , 𝑛}-th observation is drawn from the generated categorical distribution123

of abundances. For each pair of species (𝑖, 𝑗), if both 𝑖 and 𝑗 are observed within the n-observations, the124

interaction is tallied as a true positive if𝑀𝑖𝑗 = 1. If only one of 𝑖 or 𝑗 are observed—but not both—in these125

7 of 24



Figure 2: (a) The probability that an observed interaction is a true negative (y-axis) given how many
times it has been sampled as a non-interaction (x-axis). Each color reflects a different value of 𝑝𝑓𝑛, the
false-negative-rate (FNR)—this is effectively the cumulative distribution function (cdf) of the geometric
distribution. (b) The expected number of total observations needed (colors) to observe 10 co-occurrences
between a species with relative abundance 𝑃(𝐴) (x-axis) and a second species with relative abundance 𝑃(𝑌).
(c): false-negative-rate (y-axis) as a function of total sampling effort (x-axis) and network size, computed
using the method described above. For 500 independent draws from the nichemodel (Williams &Martinez
(2000)) at varying levels of species richness (colors) with connectance drawn according to the flexible-links
model (MacDonald et al. (2020)) as described in the main text. For each draw from the niche model, 200
sets of 1500 observations are simulated, for which the mean false-negative-rate at each observation-step is
computed. Means denoted with points, with 1 in the first shade and 2 in the second. (d): Same as (c),
except using empirical food webs fromMangal database, where richness. The outlier on (d) is a 714 species
food-web.
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𝑛 observations, but𝑀𝑖𝑗 = 1, this is counted as a false-negative, and a true-negative otherwise (𝑀𝑖𝑗 = 0).126

This process is illustrated conceptually in fig. 3(a).127

In fig. 2(c) we see this model of observation applied to niche model networks across varying levels of128

species richness, and in fig. 2(d) the observation model applied to Mangal food webs. For all niche model129

simulations in this manuscript, for a given number of species 𝑆 the number of interactions is drawn from130

the flexible-links model fit to Mangal data (MacDonald et al. 2020), effectively drawing the number of131

interactions 𝐿 for a random niche model food-web as132

𝐿 ∼ BetaBinomial(𝑆2 − 𝑆 + 1, 𝜇𝜙, 1 − 𝜇𝜙)

where the maximum a posteriori (MAP) estimate of (𝜇, 𝜙) applied to Mangal data from (MacDonald et al.133

2020) is (𝜇 = 0.086, 𝜙 = 24.3). All simulations were done with 500 independent replicates of unique niche134

model networks per unique number of total interactions observed 𝑛. All analyses presented here are done135

in Julia v1.8 (Bezanson et al. 2015) using both EcologicalNetworks.jl v0.5 and Mangal.jl v0.4 (Banville et136

al. 2021) and are hosted on Github (link removed for double-blind review). Note that the empirical137

data, for the reasons described above, very likely already contains many false-negatives, we’ll revisit this138

issue in the final section.139

From fig. 2(c) it is evident that the number of species considered in a study is inseparable from the140

false-negative-rate in that study, and this effect should be taken into account when designing samples of141

ecological networks in the future. We see a similar qualitative pattern in empirical networks (fig. 2(d))142

where the FNR drops off quickly as a function of observation effort, mediated by total richness. The143

practical consequence of the bottom row of fig. 2 when conducting an analysis is whether there are144

enough total number of observed interactions (the x-axis) for the threshold FNR we deem acceptable (the145

y-axis) is feasible. This raises two points: first, empirical data on interactions are subject to the practical146

limitations of funding and human-work hours, and therefore existing data tend to fall on the order of147

hundreds or thousands observations of individuals per site. Clear aggregation of data on sampling effort148

has proven difficult to find and a meta-analysis of network data and sampling effort seems both pertinent149

and necessary, in addition to the effects of aggregation of interactions across taxonomic scales (Gauzens et150

al. 2013; Giacomuzzo & Jordán 2021). This inherent limitation on in-situ sampling means we should151

optimize where we sample across space so that for a given number of samples, we obtain the maximum152
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information possible. Second, what is meant by “acceptable” FNR? This raises the question: does a shifting153

FNR lead to rapid transitions in our ability inference and predictions about the structure and dynamics of154

networks, or does it produce a roughly linear decay in model efficacy? We explore this in the final section.155

We conclude this section by advocating for the use of neutral models similar to above to generate156

expectations about the number of false-negatives in a dataset of a given size. This could prove fruitful both157

for designing surveys of interactions but also because we may want to incorporate models of imperfect158

detection error into predictive interactions models, as Joseph (2020) does for species occurrence modeling.159

Additionally, we emphasize that one must consider the context for sampling—is the goal to detect a160

particular species (as in fig. 2(c)), or to get a representative sample of interactions across the species pool?161

These arguments are well-considered when sampling individual species (Willott 2001), but have not yet162

been adopted for designing samples of communities.163

Including observation error in interaction predictions164

Here we show how to incorporate uncertainty into model predictions of interaction probability to account165

for imperfect observation (both false-negatives and false-positives). Models for interaction prediction166

typically yield a probability of interaction between each pair of species, 𝑝𝑖𝑗. When these are considered167

with uncertainty, it is usually model-uncertainty, e.g. the variance in the interaction probability prediction168

across several cross-validation folds, where the data is split into training and test sets several times. The169

method we introduce adjusts the value of a model’s predictions to produce a distribution of interaction170

probabilities corrected by a given false-negative-rate 𝑝𝑓𝑛 and false-positive-rate 𝑝𝑓𝑝 (outlined in figure171

fig. 3). First we describe how to sample from this distribution of adjusted interaction probabilities via172

simulation, and show that this distribution can be well-approximated analytically.173

To get an estimate of each interaction probability that accounts for observation error, we resample the174

output prediction from an arbitrary model for each interaction 𝑝𝑖𝑗 by simulating a set of several ‘particles.’175

Each particle is a realization of an interaction actually occurring assuming 𝑝𝑖𝑗 is a correct estimate of the176

probability of an interaction being observed. Each particle starts as being drawn as true or false according177

to 𝑝𝑖𝑗, and then adjusting this by the rate of observation error given by 𝑝𝑓𝑝 and 𝑝𝑓𝑛 to yield a single178

boolean outcome for each particle (“Resampling” within fig. 3(b)). Across of many particles, the resulting179

frequency of ‘true’ outcomes is a single resample of the probability 𝑝∗𝑖𝑗 that the interaction actually180
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Figure 3: (a) The process for estimating the false-negative-rate (FNR) for an interaction dataset consisting
of 𝑁 total observed interactions. (b) The method for resampling interaction probability based on estimates
of false-negative and false-positive rates. (c) The method for interaction probability resampling applied to
three mammals and three parasites from the Hadfield et al. (2014) dataset. The original probability 𝑝𝑖𝑗 is
indicated with a vertical dashed line. The histogram is simulated from the resampling process, and the line
indicates the gaussian approximation to this distribution. Both resampling simulations and the gaussian
approximation is applied with 𝑛𝑝 = 150
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occurred, not just that it was observed. Across several samples each of several particles, this forms a181

distribution of probabilities which are adjusted by the true and false-negative-rates.182

There is also an analytic way to approximate this distribution using the normal approximation to binomial.183

As a reminder, as the total number of samples 𝑁 from a binomial distribution for 𝑛 trials with success184

probability 𝑝 from approaches infinity, the sum of total successes across all samples approaches a normal185

distribution with mean 𝑛𝑝 and variance 𝑛𝑝(1 − 𝑝). For notation, here we refer to a normal distribution186

with mean 𝜇 and standard-deviation 𝜎 as𝒩(𝜇, 𝜎). We can use this to correct the estimate 𝑝𝑖𝑗 based on the187

expected false-negative-rate 𝑝𝑓𝑛 and false-positive rate 𝑝𝑓𝑝 to obtain the limiting distribution as the188

number of resamples approaches infinity for the resampled 𝑝∗𝑖𝑗 for a given number of particles 𝑛𝑝. We do189

this by first adjusting for the rates of observation error to get the mean resampled probability, 𝔼[𝑝∗𝑖𝑗], as190

𝔼[𝑝∗𝑖𝑗] = 𝑝𝑖𝑗(1 − 𝑝𝑓𝑝) + (1 − 𝑝𝑖𝑗)𝑝𝑓𝑛

This yields the normal approximation191

𝑛𝑝∑

𝑖=1
𝑝∗𝑖𝑗 ∼ 𝒩(𝑛𝑝 ⋅ 𝔼[𝑝∗𝑖𝑗],

√
𝑛𝑝𝔼[𝑝∗𝑖𝑗](1 − 𝔼[𝑝∗𝑖𝑗]))

which then can be converted back to a distribution of frequency of successes to yield the final192

approximation193

𝑝∗𝑖𝑗 ∼ 𝒩(𝔼[𝑝∗𝑖𝑗],

√
√√√𝔼[𝑝∗𝑖𝑗](1 − 𝔼[𝑝∗𝑖𝑗])

𝑛𝑝
) (1)

We can then further truncate this distribution to remain on the interval (0, 1), as the output is a194

probability, although in practice often the probability mass outside (0, 1) is extremely low except for 𝑝𝑖𝑗195

values very close to 0 or 1. As an example case study, we use a boosted-regression-tree to predict196

interactions in a host-parasite network (Hadfield et al. 2014) (with features derived in the same manner as197

Strydom et al. (2021) derives features on this data) to produce a set of interaction predictions. We then198

applied this method to a set of a few resampled interaction probabilities between mammals and parasite199

species shown in figure fig. 3(c).200

Why is this useful? For one, this analytic method avoids the extra computation required by simulating201

12 of 24



samples from this distribution directly. Further, it enables the extension of the natural analogue between202

𝑛𝑝 (the number of particles) and the number of observations of co-occurrence for a given pair of203

species—the fewer the particles, the higher the variance of the resulting approximation. The normal204

approximation is undefined for 0 particles (i.e. 0 observations co-occurrence), although as 𝑛𝑝 approaches 0205

the approximated normal (once truncated) approaches the uniform distribution on the interval (0, 1), the206

maximum entropy distribution where we have no information about the possibility of an interaction.207

This also has implications for what we mean by ‘uncertainty’ in interaction predictions. A model’s208

prediction can be ‘uncertain’ in two different ways: (1) the model’s predictions may have high variance, or209

(2) the model’s predictions may be centered around a probability of interaction of 0.5, where we are the210

most unsure about whether this interaction exists. Improving the incorporation of different forms of211

uncertainty in probabilistic interaction predictions seems a necessary next step toward understanding212

what pairs of species we know the least about, in order to prioritize sampling to provide the most new213

information possible.214

Positive associations in co-occurrence increase the false-negative-rate215

The model above doesn’t consider the possibility that there are positive or negative associations which shift216

the probability of species cooccurrence away from what is expected based on their relative abundances due217

to their interaction (Cazelles et al. 2016). However, here we demonstrate that the probability of having a218

false-negative can be higher if there is some positive association in the occurrence of species 𝐴 and 𝐵. If219

we denote the probability that we observe the co-occurrence of two species 𝐴 and 𝐵 as 𝑃(𝐴𝐵) and if there220

is no association between the marginal probabilities of observing 𝐴 and observing 𝐵, denoted 𝑃(𝐴) and221

𝑃(𝐵) respectively, then the probability of observing their co-occurrence is the product of the marginal222

probabilities for each species, 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵). In the other case where there is some positive strength223

of association between observing both 𝐴 and 𝐵 because this interaction is “important” for each species,224

then the probability of observation both 𝐴 and 𝐵, 𝑃(𝐴𝐵), is greater than 𝑃(𝐴)𝑃(𝐵) as 𝑃(𝐴) and 𝑃(𝐵) are225

not independent and instead are positively correlated, i.e. 𝑃(𝐴𝐵) > 𝑃(𝐴)𝑃(𝐵). In this case, the probability226

of observing a single false-negative in our naive model from fig. 2(a) is 𝑝𝑓𝑛 = 1 − 𝑃(𝐴𝐵), which due to the227

above inequality implies 𝑝𝑓𝑛 > 1 − 𝑃(𝐴)𝑃(𝐵). This indicates an increasingly greater probability of a false228

negative as the strength of association gets stronger, 𝑃(𝐴𝐵) → 𝑃(𝐴𝐵) ≫ 𝑃(𝐴)𝑃(𝐵). However, this still does229
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not consider variation in species abundance in space and time (Poisot et al. 2015). If positive or negative230

associations between species structure variation in the distribution of 𝑃(𝐴𝐵) across space/time, then the231

spatial/temporal biases induced by data collection would further impact the realized false-negative-rate, as232

the probability of false negative would not be constant for each pair of species across sites.233

To test for these positive associations in data we scoured Mangal for datasets with many spatial or temporal234

replicates of the same system, which led the the resulting seven datasets set in figure fig. 4. For each235

dataset, we compute the marginal probability 𝑃(𝐴) of occurrence of each species 𝐴 across all networks in236

the dataset. For each pair of interacting species 𝐴 and 𝐵, we then compute and compare the probability of237

co-occurrence if each species occurs independently, 𝑃(𝐴)𝑃(𝐵), to the empirical joint probability of238

co-occurrence, 𝑃(𝐴𝐵). Following our analysis above, if 𝑃(𝐴𝐵) is greater than 𝑃(𝐴)𝑃(𝐵), then we expect239

our neutral estimates of the FNR above to underestimate the realized FNR. In fig. 4, we see the difference240

between 𝑃(𝐴𝐵) and 𝑃(𝐴)𝑃(𝐵) for the seven suitable datasets with enough spatio-temporal replicates and a241

shared taxonomic backbone (meaning all individual networks use common species identifiers) found on242

Mangal to perform this analysis. Further details about each dataset are reported in tbl. 1.243

In each of these datasets, the joint probability of co-occurrence 𝑃(𝐴𝐵) is decisively greater than our244

expectation if species co-occur in proportion to their relative abundance 𝑃(𝐴)𝑃(𝐵). This suggests that245

there may not be as many “neutrally forbidden links” (Canard et al. 2012) as we might think, and that the246

reason we do not have records of interactions between rare species is probably due to observation error.247

This has serious ramifications for the widely observed property of nestedness seen in bipartite networks248

(Bascompte & Jordano 2007)—perhaps the reason we have lots of observations between generalists is249

because they are more abundant, and this is particularly relevant as we have strong evidence that250

generalism drives abundance (Song et al. 2022a), not vice-versa.251

Table 1: The datasets used in the above analysis (Fig 2). The table reports the type of each dataset, the total
number of networks in each dataset (𝑁), the total species richness in each dataset (𝑆), the connectance
of each metaweb (all interactions across the entire spatial-temporal extent) (𝐶), the mean species richness
across each local network 𝑆̄, the mean connectance of each local network 𝐶̄, the mean 𝛽-diversity among
overlapping species across all pairs of network species (𝛽𝑂𝑆), and the mean 𝛽-diversity among all species in
the metaweb (𝛽𝑊𝑁). Both metrics are computed using KGL 𝛽-diversity (Koleff et al. 2003)

Network Type 𝑁 𝑆 𝐶 𝑆̄ 𝐶̄ 𝛽𝑂𝑆 𝛽𝑊𝑁

Kopelke et al. (2017) Food Web 100 98 0.037 7.87 0.142 1.383 1.972

Thompson & Townsend (2000) Food Web 18 566 0.014 80.67 0.049 1.617 1.594
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Network Type 𝑁 𝑆 𝐶 𝑆̄ 𝐶̄ 𝛽𝑂𝑆 𝛽𝑊𝑁

Havens (1992) Food Web 50 188 0.065 33.58 0.099 1.468 1.881

Ponisio et al. (2017) Pollinator 100 226 0.079 23.0 0.056 1.436 1.870

Hadfield et al. (2014) Host-Parasite 51 327 0.085 32.71 0.337 1.477 1.952

Closs & Lake (1994) Food Web 12 61 0.14 29.09 0.080 1.736 1.864

CaraDonna et al. (2017) Pollinator 86 122 0.18 21.42 0.312 1.527 1.907

The impact of false-negatives on network properties and prediction252

Here, we assess the effect of false-negatives on our ability to make predictions about interactions, as well253

as their effect on network structure. The prevalence of false-negatives in data is the catalyst for interaction254

prediction in the first place, and as a result methods have been proposed to counteract this bias (Stock et255

al. 2017; Poisot et al. 2022). However, it is feasible that the FNR in a given dataset is so high that it could256

induce too much noise for an interaction prediction model to detect the signal of possible interaction257

between species.258

To test this we use the dataset from Hadfield et al. (2014) that describes host-parasite interaction networks259

sampled across 51 sites, and the same method as Strydom et al. (2021) to extract latent features for each260

species in this dataset based on applying PCA to the co-occurrence matrix. We then predict a metaweb261

(equivalent to predicting true or false for an interaction between each species pair, effectively a binary262

classification problem) from these species-level features using four candidate models for binary263

classification—three often used machine-learning (ML) methods (Boosted Regression Tree (BRT),264

Random Forest (RF), Decision Tree (DT)), and one naive model from classic statistics (Logistic Regression265

(LR)). Each of the ML models are bootstrap aggregated (or bagged) with 100 replicates each. We partition266

the data into 80-20 training-test splits, and then seed the training data with false negatives at varying rates,267

but crucially do nothing to the test data. We fit all of these models using MLJ.jl, a high-level Julia268

framework for a wide-variety of ML models (Blaom et al. 2020). We evaluate the efficacy of these models269

using two common measures of binary classifier performance: the area under the receiver-operator curve270

(ROC-AUC) and the area under the precision-recall curve (PR-AUC), for more details see Poisot (2022).271

Here, PR-AUC is slightly more relevant as it is a better indicator of prediction of false-negatives. The272
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Figure 4: The difference between joint-probability of co-occurrence (𝑃(𝐴𝐵)) and expected probability of co-
occurrence under independence (𝑃(𝐴)𝑃(𝐵)) for interacting species for each dataset. The red-dashed line
indicates 0 (no association). Each histogram represents a density, meaning the area of the entire curve sums
to 1. The continuous density estimate (computed using local smoothing) is shown in grey. The p-value on
each plot is the result of a one-sided t-test comparing the mean of each distribution to 0.

results of these simulations are shown in fig. 5(a & b).273

One interesting result seen in fig. 5(a & b) is that the ROC-AUC value does not approach random in the274

same way the PR-AUC curve does as we increase the added FNR. The reason for this is that ROC-AUC is275

fundamentally not as useful a metric in assessing predictive capacity as PR-AUC. As we keep adding more276

false-negatives, the network eventually becomes a zeros matrix, and these models can still learn to predict277

“no-interaction” for all possible species pairs, which does far better than random guessing (ROC-AUC =278

0.5) in terms of the false positive rate (one of the components of ROC-AUC). This highlights a more broad279

issue of label class imbalance, meaning there are far more non-interactions than interactions in data. A280

full treatment of the importance of class-balance is outside the scope of this paper, but is explored in-depth281

in Poisot (2022). Further we see, if anything, gradual decline in the performance of the model until we282

reach very high FNR levels (i.e. 𝑝𝑓𝑛 > 0.7). This is consistent with other recent work (Gupta et al. 2023),283

although it must be considered that the empircal data on which these models are trained already are284

almost certain to already contain false-negatives.285

Although these ML models are surprisingly performant at link prediction given their simplicity, there286
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Figure 5: (a) The area-under the receiver-operator curve (ROC-AUC) and (b) The area-under the precision-
recall curve (PR-AUC; right) for each different predictive model (colors/shapes) across a spectrum of the
proportion of added false-negatives (x-axis). (c)Themean trophic-level of all species in a network generated
with the niche model across different species richnesses (colors). For each value of the FNR, the mean
trophic level was computed across 50 replicates. The shaded region for each line is one standard-deviation
across those replicates.
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have been several major developments in applying deep-learning methods to many tasks in network287

inference and prediction—namely graph-representation learning (GRL, Khoshraftar & An (2022)) and288

graph convolutional networks (Zhang et al. 2019). At this time, these advances can not yet be applied to289

ecological networks because they require far more data than we currently have. We already have lots of290

features that could be used as inputs into these models (i.e. species level data about occurrence, genomes,291

abundance, etc.), but our network datasets barely get into the hundreds of local networks sampled across292

space and time (tbl. 1). Once we start to get into the thousands, these models will become more useful, but293

this can only be done with systematic monitoring of interactions. This again highlights the need to294

optimize our sampling effort to maximize the amount of information contained in our data given the295

expense of sampling interactions.296

We also consider how the FNR affects network properties. In fig. 5(c) we see the mean trophic level across297

networks simulated using the niche model (as above), across a spectrum of FNR values. In addition to the298

clear dependence on richness, we see that mean trophic level, despite varying widely between niche model299

simulations, tends to be relatively robust to false-negatives and does not deviate widely from the true value300

until very large FNRs. This is not entirely unsurprising. Removing links randomly from a food-web is301

effectively the inverse problem of the emergence of a giant component (more than half of the nodes are in302

a connected network) in random graphs (see Li et al. (2021) for a thorough review). The primary303

difference being that we are removing edges, not adding them, and thus we are witnessing the dissolution304

of a giant component, rather than the emergence of one. Further applications of percolation theory (Li et305

al. 2021) to the topology of sampled ecological networks could improve our understanding of how306

false-negatives impact the inferences about the structure and dynamics on these networks.307

Discussion308

Species interactions enable the persistence and functioning of ecosystems, but our understanding of309

interactions is limited due to the intrinsic difficulty of sampling them. Here we have provided a null310

model for the expected number of false-negatives in an interaction dataset. We demonstrated that we311

expect many false-negatives in species interaction datasets purely due to the intrinsic variation of312

abundances within a community. We also, for the first time to our knowledge, measured the strength of313

association between co-occurrence and interactions (Cazelles et al. 2016) across many empirical systems,314
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and found that these positive associations are both very common, and showed algebraically that they315

increase the realized FNR. We have also shown that false-negatives could further impact our ability to316

both predict interactions and infer properties of the networks, which highlights the need for further317

research into methods for correcting this bias in existing data.318

A better understanding of how false-negatives impact species interaction data is a practical319

necessity—both for inference of network structure and dynamics, but also for prediction of interactions by320

using species level information. False-negatives could pose a problem for many forms of inference in321

network ecology. For example, inferring the dynamic stability of a network could be prone to error if the322

observed network is not sampled “enough.” What exactly “enough” means is then specific to the323

application, and should be assessed via methods like those here when designing samples. Further,324

predictions about network rewiring (Thompson & Gonzalez 2017) due to range shifts in response to325

climate change could be error-prone without accounting for interactions that have not been observed but326

that still may become climatically infeasible. As is evident from fig. 2(a), we can never guarantee there are327

no false-negatives in data. In recent years, there has been interest toward explicitly accounting for328

false-negatives in models (Stock et al. 2017; Young et al. 2021), and a predictive approach to329

networks—rather than expecting our samples to fully capture all interactions (Strydom et al. 2021). As a330

result, better models for predicting interactions are needed for interaction networks. This includes331

explicitly accounting for observation error (Johnson & Larremore 2021)—certain classes of models have332

been used to reflect hidden states which account for detection error in occupancy modeling (Joseph 2020),333

and could be integrated in the predictive models of interactions in the future.334

This work has several practical consequences for the design of surveys for species’ interactions.335

Simulating the process of observation could be a powerful tool for estimating the sampling effort required336

by a study that takes relative abundance into account, and provides a null baseline for expected FNR. It is337

necessary to take the size of the species pool into account when deciding how many total samples is338

sufficient for an “acceptable” FNR (fig. 2(c & d)). Further the spatial and temporal turnover of interactions339

means any approach to sampling prioritization must be spatiotemporal. We demonstrated earlier that340

observed negatives outside of the range of both species aren’t informative, and therefore using species341

distribution models could aid in this spatial prioritization of sampling sites.342

We also should address the impact of false-negatives on the inference of process and causality in343

community ecology. We demonstrated that in model food webs, false-negatives do not impact the measure344
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of total trophic levels until very high FNR (figure fig. 5(c)), although we cannot generalize this further to345

other properties. This has immediate practical concern for how we design what taxa to sample—does it346

matter if the sampled network is fully connected? It has been shown that the stability of subnetworks can347

be used to infer the stability of the metaweb paper beyond a threshold of samples (Song et al. 2022b). But348

does this extend to other network properties? And how can we be sure we are at the threshold at which we349

can be confident our sample characterizes the whole system? We suggest that modeling observation error350

as we have done here can address these questions and aid in the design of samples of species interactions.351

To try to survey to avoid all false-negatives is a fool’s errand. Species ranges overlap to form mosaics,352

which themselves are often changing in time. Communities and networks don’t end in space, and the353

interactions that connect species on the ‘periphery’ of a given network to species outside the spatial extent354

of a given sample will inevitably appear as false-negatives in practical samples. The goal should instead be355

to sample a system enough to have a statistically robust estimate of the current state and empirical change356

over time of an ecological community at a given spatial extent and temporal resolution, and to determine357

what the sampling effort required should be prior to sampling.358
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